

fermacell

Kenndaten von FERMACELL Profi-Tipp: Kenndaten von FERMACELL Produkten

- Gipsfaser-Platten
- Powerpanel H₂O
- Powerpanel HD
- Ausgleichsschüttung
- Wabenschüttung
- Gebundene Schüttung
- Powerpanel SE

FERMACELL Gipsfaser-Platten

FERMACELL Gipsfaser-Platten bestehen aus Gips und Papierfasern, die in einem Recyclingverfahren gewonnen werden. In computergesteuerten Fertigungsstraßen wird eine homogene Mischung dieser beiden natürlichen Rohstoffe nach Zugabe von Wasser – ohne weitere Bindemittel – unter hohem Druck zu stabilen und geruchsneutralen Platten gepresst, getrocknet und auf die jeweiligen Formate zugeschnitten.

Kenndaten	
Maßtoleranzen bei Ausgleichsfeuchte für Standardplattenformate	
Länge, Breite	±1 mm
Diagonaldifferenz	⊼2 mm
Dicke: 10/12,5/15/18	± 0,3 mm

Kennwerte	
Rohdichte (Produktionsvorgabe)	1150 ± 50 kg/m³
Wasserdampf-Diffusionswiderstandszahl µ	13
Wärmeleitfähigkeit λ	0,32 W/mK
spezifische Wärmekapazität c	1,1 kJ/kgK
Brinellhärte	30 N/mm²
Dickenquellung nach 24 Std. Wasserlagerung	←2%
thermischer Ausdehnungskoeffizient	0,001 %/K
Dehnung/Schwindung bei Veränderung der rel. Luftfeuchtigkeit um 30 % [20 °C]	0,25 mm/m
Ausgleichsfeuchte bei 65 % rel. Luftfeuchte und 20 °C Lufttemperatur	1,3 %
Baustoffklasse gemäß DIN EN 13501-1 (nicht brennbar)	A 2
Brandkennziffer nach VKF	6q.3
pH-Wert	7–8

Rechenwerte der Moduln in N/mm²	
[Zulassungsnummer: Z-9.1-434 / ETA-03/0050]	
E-Modul Biegung rechtwinklig zur Plattenebene $E_{Bxy}/E_{m,mean}$	3800
E-Modul Biegung in Plattenebene E _{Bxz} /E _{m,mean}	3800
$E-Modul Zug E_Z / E_{t,mean}$	3800
E -Modul Druck $E_D/E_{c,mean}$	3800
Schubmodul G Biegung rechtwinklig zur Plattenebene G_{xy}/G_{mean}	1600
Schubmodul G Biegung in Plattenebene G_{xz}/G_{mean}	1600

Zulässige Spannungen in N/mm² für Berechnungen nach DIN 1052	
[Zulassungsnummer: Z-9.1-434]	
Biegung rechtwinklig zur Plattenebene zul σ_{Bxy}	1,2
Biegung in Plattenebene zul σ_{Bxz}	1,1
Zug in Plattenebene zul $oldsymbol{\sigma}_{Zx}$	0,5
Druck in Plattenebene zul $\sigma_{ extsf{Dx}}$	2,0
Druck rechtwinklig zur Plattenebene zul $\sigma_{ extsf{D}}$	2,5
Abscheren in Plattenebene zul $ au_{zx}$	0,3
Abscheren rechtwinklig zur Plattenebene zul $ au_{xy}$	0,6

Charakteristische Festigkeiten in N/mm² in Abhängigkeit	gkeiten in N/mm² in Abhängigkeit Nenndicke der Platten in mm				
von der Nenndicke der Platten für Berechnungen nach					
DIN 1052 [Zulassungsnummer: Z-9.1-434 / ETA-03/0050]	10	12,5	15	18	
Plattenbeanspruchung					
Biegung f _{m,k}	4,6	4,3	4,0	3,6	
Schub f _{v,k}	1,9	1,8	1,7	1,6	
Scheibenbeanspruchung					
Biegung f _{m,k}	4,3	4,2	4,1	4,0	
Zug f _{t,k}	2,5	2,4	2,4	2,3	
Druck f _{c,k}	8,5	8,5	8,5	8,5	
Schub f _{v,k}	3,7	3,6	3,5	3,4	

Bemessungswerte nach SIA 265

FERMACELL Gipsfaser-Platten							
	Nenndicke der Platten		mm	10	12.5	15	18
	Rohdichte	δ_k	kg/m³	1'125	1'125	1'125	1′125
Bemessungswerte SIA 265 1121							
Plattenbeanspruchung							
	Festigkeit						
	Biegung	f _{m,d}	N/mm²	2.1	2.0	1.8	1.6
	Schub	f _{v,d}	N/mm²	0.9	0.8	0.8	0.7
	Verformung						
	Elastizitätsmodul ³⁾	E _{m,mean}	N/mm²	3.800	3.800	3.800	3,800
	Schubmodul ^{3]}	G _{mean}	N/mm²	1.600	1'600	1'600	1.600
Scheibenbeanspruchung							
	Festigkeit						
	Biegung	f _{m,d}	N/mm²	2.0	1.9	1.9	1.8
	Schub	f _{v,d}	N/mm²	1.7	1.6	1.6	1.5
	Verformung						
	Elastizitätsmodul ³⁾	E _{m,mean}	N/mm²	3.800	3,800	3.800	3,800
	Schubmodul ^{3]}	G _{mean}	N/mm²	1'600	1'600	1'600	1'600
	Festigkeit						
~ 4	Zug	f _{t,d}	N/mm²	1.1	1.1	1.1	1.0
	Druck	f _{c,d}	N/mm²	3.9	3.9	3.9	3.9
	Verformung						
	Elastizitätsmodul ³⁾	E _{t,mean}	N/mm²	3.800	3'800	3.800	3,800

¹¹ Die Werte der kennzeichnenden Eigenschaften sind direkt der Europäischen Technischen Zulassung ETA-03/005 zu entnehmen

 $^{^{3)}}$ Für die charakteristischen Steifigkeitskennwerte gilt: $\rm E_{05}$ = 0.9 x $\rm E_{mean}$; $\rm G_{05}$ = 0.9 x $\rm G_{mean}$

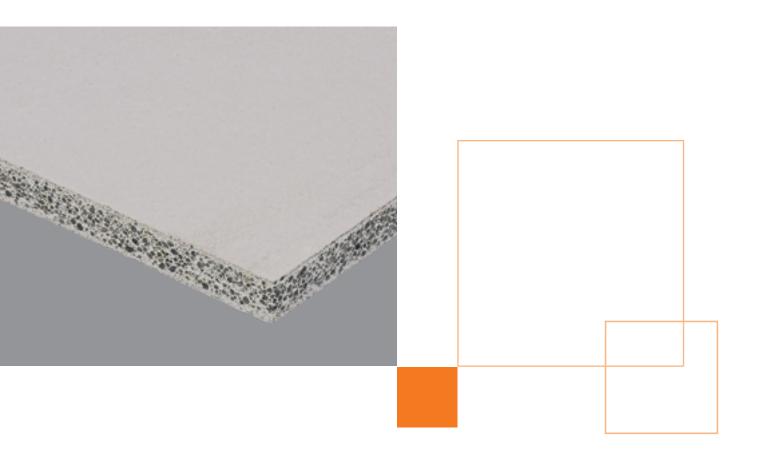
Umrechnungsfaktoren Materialfeuchte η_{w} und Richtwerte Kriechzahl ϕ			
Beiwert Einfluss Holzfeuchte	Feuchteklasse		
	1	2	3
η_{w} für Tragwiderstand	1.0	0.75	_ 1]
η_w für Steifigkeit	1.0	0.8	_ 1]
Richtwerte Kriechzahl ϕ	3.0	4.0	_ 1]

^{1]} Statischer Einsatz in der Feuchteklasse 3 nicht zugelassen

Umrechnungsfaktoren Lastdauer η_{t}				
Beiwert Einfluss Lastdauer	Lastdauer			
	ständig	mittel	sehr kurz	
η_t für Tragwiderstand	0.3	1.0	1.8	

 $\label{last-dauer} \begin{tabular}{ll} Last dauer \verb|,.ständig"| &\rightarrow 6 Monate: z.B. Leiteinwirkung Lagerlast \\ Last dauer \verb|,.sehr kurz"| & 1 Minute: z.B. Leiteinwirkung Anpralllast \\ \end{tabular}$

Bedingungen zur statischen Bemessung


- Berechnung der Einwirkungen nach Bemessungskonzept entsprechend Norm SIA 260: 2003 oder EC 1.
- Die Werte gelten für FERMACELL Gipsfaser-Platten scharfkantig, profiliert oder mit Trockenbau-Kante (TB-Kante).
- Bei Beanspruchung im Bereich der TB-Kante ist die rechnerische Plattenstärke um 2,5 mm zu reduzieren.
- FERMACELL Gipsfaser-Platten weisen längs und quer zur Produktionsrichtung die gleichen mechanischen Eigenschaften auf
- Ausführung und Verarbeitung gemäss den aktuell gültigen Zulassungen und den entsprechenden Herstellerangaben.

Grundlagen der Bemessungswerte

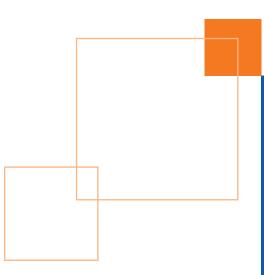
- Norm SIA 265:2003; Holzbau
- Norm DIN 1052:2004-08;
 Entwurf, Berechnung und
 Bemessung von Holzbauwerken
- Materialzulassungen für den statischen Einsatz: ETA-03/0050 (10.02.2004); Z.-9.1-434 (15.11.2005)
- Verhältniswert für Gipsplatten: $\gamma_M/\eta_M = 2.2$

 $^{^{2}l}$ Die Werte beziehen sich auf eine Anwendung in der Feuchteklasse 1 unter mittlerer Lasteinwirkungsdauer mit: η_w =1.0; η_t = 1.0

FERMACELL Powerpanel H₂O

Powerpanel $\rm H_2O$ ist eine zementgebundene Leichtbeton-Bauplatte mit Sandwichstruktur. Sie hat eine beidseitige Armierung unter den Deckschichten mit alkaliresistentem Glasfasergewebe (5 mm x 5 mm). Ideal für den Ausbau von allen Nassräumen.

Kenndaten


Plattenmaße	
Länge	1000/2000*/2600/3000* mm
Breite	1250 mm
Dicke	12,5 mm

^{*} Liefertermin auf Anfrage

Kenndaten	
Baustoffklasse:	nicht brennbar, A1 nach EN 13501-1
Brandkennziffer nach VKF:	6.3
Maßtoleranzen: L, B:	± 1 mm
Dickentoleranz (12,5):	± 0,5 mm
Gewicht:	1000 kg/m³, 12,5 kg/m²
Ausgleichsfeuchte:	ca. 5 %
Wasserdampf Diffusionswiderstandszahl $\mu\colon$	56 nach DIN EN 12572
Wärmeleitfähigkeit $\lambda_{10,\mathrm{tr}}$:	0,173 W/(mK) nach DIN EN 12664
Wärmedurchlasswiderstand R _{10,tr} :	0,07 (m²K)/W nach DIN EN 12664
Spezifische Wärmekapazität c_p :	1000 J/(kgK)
Biegefestigkeit:	ca. 6,0 N/mm²
E-Modul Biegung:	ca. 5200 N/mm²
Alkalität:	ca. 10

FERMACELL Powerpanel HD

Powerpanel HD sind zementgebundene, glasfaserbewehrte Sandwichplatten mit Leichtzuschlagsstoffen aus Blähton- und Recycling-Glasschaumgranulat. Sie sind direkt als Putzträgerplatten für den Außenbereich einsetzbar.

Kenndaten

Plattenmaße (Standardformate)	
Länge	2600/3000 mm; 1000* mm
Breite	1250 mm
Dicke	15 mm
(Zuschnitte sind in allen Formaten bis maximal 3000 x1250 mm möglich.)	
Maßtoleranzen: Länge, Breite, Dicke	± 1 mm

Rohdichte, Festigkeit	
Rohdichte	ca. 1000 kg/m³
Flächengewicht	ca. 16,5 kg/m²
Biegefestigkeit	→ 3,5 N/mm²
Druckfestigkeit (Druck rechtwinklig zur Plattenebene)	→ 6 N/mm²
Biege-E-Modul bei Raumtemperatur (20 °C)	4500 ± 500 N/mm²

Weitere Kennwerte	
Baustoffklasse nach EN 13501-1	A1
Brandkennziffer nach VKF	6.3
Wasserdampf-Diffusionswiderstandszahl μ	40
Wärmeleitfähigkeit λ_{R}	0,40 W/(m • K)
Wärmedehnzahl α_T [Temperaturbereich: –20 °C bis +75 °C]	11,0 • 10 ⁻⁶ 1/K
Ausgleichsfeuchte bei Raumklima	ca. 7 %
Dehnung/Schwindung bei Veränderung der rel. Luftfeuchte um 30 % (20°C)	0,30 mm/m
Frostbeständig	

 $[\]label{thm:continuous} \begin{tabular}{l} * speziell für den Einsatz als belüftete/nicht belüftete Außenwandbekleidung (weiterführende Informationen finden Sie im FERMACELL Profi-Tipp: \end{tabular}$

[&]quot;FERMACELL Powerpanel HD als Vorhangschale im Holzbau")

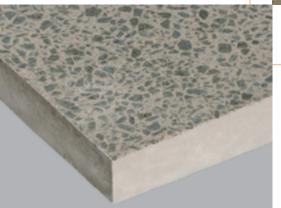
FERMACELL Ausgleichsschüttung

Die FERMACELL Ausgleichsschüttung ist ein speziell getrocknetes, mineralisches Porenbetongranulat für den Höhenausgleich von Fußböden in Trockenbauweise bei Altund Neubauten.

Kenndaten	
Baustoffklasse:	nicht brennbar, A1 nach EN 13501-1
Brandkennziffern nach VKF:	6.3
Wärmeleitzahl λ_{R} :	0,09 W/mK
Körnung:	0,2 bis 4 mm
Schüttdichte:	ca. 400 kg/m³
mind. Schütthöhe:	10 mm
max. Schütthöhe:	100 mm (Wohnbereich)
Schüttmenge je m²:	10 Liter pro 1 cm Höhe

FERMACELL Wabenschüttung

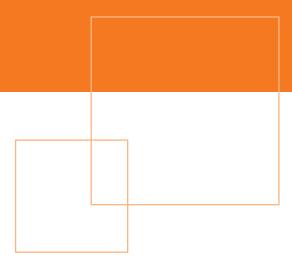
Für das Einbringen von zusätzlicher Masse in den Fußbodenaufbau wird die FERMACELL Estrich-Wabe vollflächig auf der Rohdecke verlegt und mit der FERMACELL Wabenschüttung befüllt. Die Estrich-Wabe ist in 30 und 60 mm Höhe lieferbar. Die Wabenschüttung besteht aus einer mineralischen Körnung.


Kenndaten	
Baustoffklasse:	A1 nach EN 13501-1
Brandkennziffern nach VKF:	6.3
Wärmeleitzahl λ_R :	0,7 W/mK
Körnung:	1 bis 4 mm
Schüttdichte:	ca. 1.500 kg/m³
mind. Schütthöhe:	30 mm
max. Schütthöhe (unverdichtet):	60 mm
Schüttmenge je m²:	10 Liter pro 1 cm Höhe

FERMACELL Gebundene Schüttung

Die FERMACELL Gebundene Schüttung besteht aus recyceltem Schaumkunststoff in der Korngröße 2 bis 8 mm und einem zementären Bindemittel. Nach dem Beimengen von Wasser (8–10 Liter/80-l-Sack) sind Schütthöhen ab 40 mm bis 2000 mm in Schichtdicken bis 500 mm möglich.

Kenndaten	
Druckfestigkeit (DIN 53 421):	0,4 bis 0,5 N/mm²
Trockenrohdichte:	ca. 350 kg/m³
Baustoffklasse (DIN 4102):	nicht brennbar A2
Dampfdiffusion (DIN 52 615):	$\mu = 7$
Wärmeleitzahl:	0,12 W/mK
Verarbeitungszeit:	ca. 45 Minuten bei 20 °C
Verarbeitungstemperatur:	\rightarrow 5 °C Luft-/Objekttemp.
mind. Schütthöhe:	40 mm
max. Schütthöhe:	2000 mm
Schüttmenge je m²:	10 Liter pro 1 cm Höhe



FERMACELL Powerpanel SE

FERMACELL Powerpanel SE besteht aus einer Mischung aus Beton und Basalt. Das macht die Estrichplatte extrem widerstandsfähig. Sie ist sowohl für hohe Lasten als auch für feuchte und viele chemische Beanspruchungen geeignet.

Kenndaten	
Dicke	20 mm (andere Dicken auf Anfrage)
Abmessung	330 x 330 mm 216 Stück/Palette
Gewicht	ca. 2.450 kg/m³ ca. 49 kg/m²
Plattengewicht	ca. 5,4 kg
Baustoffklasse:	nicht brennbar, A1 nach EN 13501-1
Brandkennziffern nach VKF:	6.3
Festigkeit	→ CT-C30-F5 (früher ZE30)
Belastung	bis 10 kN/m² (je nach Aufbau)
Oberflächenzugfestigkeit	3 N/mm²
Wärmeleitfähigkeit	λ(W/mK) = 2,1

fermacell

CH/02.08/FP 4000 dt

Xella Trockenbau-Systeme GmbH

Verkaufsbüro Schweiz Südstrasse 4

CH-3110 Münsingen Telefon: 031-7242020

Technische Auskünfte: 031-7242030

Telefax: 031-7242029

 ${\sf FERMACELL@} \ {\sf und} \ {\sf XELLA@} \ {\sf sind} \ {\sf eingetragene} \ {\sf Marken} \ {\sf der} \ {\sf XELLA-Gruppe}.$

